
System P: Query Answering in PDMS
under Limited Resources

Armin Roth Felix Naumann Tobias Hübner Martin Schweigert
Humboldt-Universität zu Berlin

Berlin, Germany

{aroth, naumann, thuebner, martin.schweigert}@informatik.hu-berlin.de

ABSTRACT
Peer data management systems (Pdms) consist of autonom-
ous peers with mappings to other peers. Queries submitted
at a peer are answered with data residing at that peer and
by data that is reached along paths of mappings through
the network of peers. System P is a full-fledged relational
Pdms featuring peers distributed over the network, rela-
tional schemata and multiple local sources at each peer, LaV
and GaV mappings between peer schemata, fully localized
query planning and execution. In addition, it serves as a
test bed with automated deployment of schemata and data
across the network and an independent monitor peer to per-
form scalability measurements.

We have observed that the number of mappings and peers
that must be traversed to obtain a complete query answer
reaches the point of intractability for already relatively small
Pdms (50+ peers). We present and evaluate a set of de-
central strategies that guide peers in their decision along
which further mappings the query should be sent. Thereby
we compromise on the completeness of the query result but
gain feasibility of query answering in large Pdms.

1. PDMS AND DATA QUALITY
Sharing and integrating relevant information is a pressing

problem. The main motivation of information integration
is a complete view of the world. This requires considera-
tion of as many relevant and heterogeneous data sources as
possible. Centralized data integration systems, e.g., data
warehouses or federated DBMS, seek to fulfill these require-
ments by using an integrated global schema. In practice, it
can be observed that a decentralized fashion of data shar-
ing is preferred. Users desire to pose queries to their own
schema. Such requirements are addressed by several works
on peer data management systems (Pdms) [1, 2, 3, 4, 6]. In
a Pdms a peer can serve both as data source and as a medi-
ator. Queries are translated and transferred using semantic
relationships between peers, so-called mappings, as shown
Fig. 2. Examples for application areas of Pdms are partner-
ships between companies for developing complex technical
products, cooperations of scientific institutions, and ad hoc
disaster management. Pdms can also serve as a decentral-
ized infrastructure for mediation between ontologies in the
semantic web [2, 5, 7].
Query Planning. Queries are posed at any peer in the
Pdms and initially answered by locally stored data. Ad-

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

ditionally, the query is passed on to other peers via map-
pings, which may reformulate the query so that it conforms
to the other peer’s schema. Henceforth, the query is passed
through the system and answers are sent back, again via the
mappings, to the initial peer. A query answer is complete if
there remain no further possible reformulations of the query
at any peer.

Several approaches to Pdms query answering have
emerged. An important distinction is whether they assume
some form of global knowledge, such as the schemata and
mappings in [13], or whether each peer functions fully au-
tonomically, such as System P presented here. System P
adopts the rule-goal-tree approach of [6], but does not form
a global plan that can be optimized. Rather, each peer forms
one part of the rule-goal-tree and decides independently how
to reformulate the query using mappings to other known
peers.
Scalability. In implementing System P we were able to
confirm our original suspicion: Maintenance, query plan-
ning, and query execution in Pdms does not scale well be-
yond 50 peers, depending on the number of mappings in
the system. We address all three problems by eliminating
the need of global knowledge (see paragraph above) and by
compromising on the completeness of query results.

In Pdms with very many sources a complete result can-
not be expected anyway, be it due to peer dynamics, net-
work failures, application requirements, etc. To achieve con-
straints on network load and/or response time, we present
several pruning strategies that bound the space of all query
plans. The strategies are implemented locally by each peer,
and usually limit the set of mappings along which to pass a
query. The goal of System P is to achieve optimal complete-
ness within given cost/time constraints. Our completeness
model estimates both the result cardinality and the richness
of the result, i.e., the number of non-null values (Sec. 3.2).
The query planning strategies we propose exploit this com-
pleteness model for their decisions.
Related work. Upon close examination of related work
we believe to present the first full-fledged PDMS comprising
optimization techniques to trade off benefit and cost dur-
ing exploring the search space. This means System P is
not simulated but works on multiple machines and acutally
processes relational data. Of course the concept of Pdms
and simulations have been presented before: Most promi-
nently Piazza guided our design and query semantics [6].
Concessions toward completeness of query results are men-
tioned, but not discussed in detail. Although the system
includes pruning techniques [13], these are ‘safe’ and thus

do not principally solve the scalability problem. Also they
involve non-local coordination between peers, whereas our
strategies are strictly local to autonomous peers.

The Semantic Gossiping approach uses cycles in mapping
networks to examine loss of information [1]. That is, instead
of explicitly modeling completeness as in our approach, the
authors use instance sampling to assess information quality
criteria. The coDB system [4] is quite similar to System P,
but includes no optimization approaches. As the peers in
the SomeWhere system [2] reason over theories consisting
of propositional clauses, it is not directy comparable to other
Pdms using database techniques.

For brevity, other relevant Pdms projects, such as Edu-
tella [8], Hyperion [10], or the work by Calvanese et al. [3],
are not discussed here. Please see [11] for a more elaborate
discussion. Also, related work on the completeness model
(Sec. 3.2) has been previously discussed in [9].
Contributions. This paper presents System P, an up-and-
running Pdms, and its features to address the problem of
scalability. Section 2 presents details of the system archi-
tecture, its mapping and query processing capabilities. Fur-
thermore it describes our test bed, which allows a parame-
terized generation of many different schemas and their ex-
tensions, and which allows their deployment on Pdms graphs
of different shapes. Section 3 then gives an overview of differ-
ent pruning strategies to achieve high scalability. We include
some experimental results showing that high completeness
can already be achieved at low cost. Finally, Section 5 con-
cludes and gives an outlook on future plans, such as a refined
result cardinality estimation.

2. SYSTEM P
To investigate our query reformulation and pruning strate-

gies experimentally, we have developed a Java-based Pdms
implementation called System P. This system is based on
the JXTA framework (www.jxta.org), which supports com-
munication between distributed peers or nodes across the
Internet. System P is fully functional; initial tests have used
up to 50 peers across a network and have answered queries
against data distributed across all peers. Further informa-
tion, a recorded demo, and a WebStart enabled version can
be found at www.informatik.hu-berlin.de/mac/SystemP.

2.1 Features
As shown in Fig. 1, peers in System P consist of a rela-

tional peer schema, a set of local sources connected to the
peer schema via local mappings, and peer mappings from
one peer schema to the schemas of other peers. Mappings
and queries are formulated as datalog rules.

In System P, any existing RDBMS with a JDBC driver
can be embedded as a local source. If no DBMS is available,
System P uses an internal HSQLDB database for storing
temporary data and to perform joins as well as unions.

Query planning is fully decentralized and implemented
locally at the peers. Based on the given local-as-view (LaV)
and global-as-view (GaV) peer mappings, a local rule-goal
tree is created at the peer receiving the original query as well
as at every peer that is contacted during query processing.
After local optimization and possibly pruning, the resulting
local query plan is executed. This process requires no global
knowledge at all; query planning, optimization, and pruning
strategies are based on local peer information only.

For experimental purposes System P features a special-

Figure 1: Components of a System P peer.

ized monitor peer to which the regular peers report their
activities. This peer can be used to create, visualize, ma-
nipulate, and query a Pdms. During query execution this
peer can perform a live-visualization of the mapping paths
already used for query reformulation and passing back re-
sults. The monitor peer is also able to collect numerous
metadata that can be used for query execution analysis and
statistics, for instance execution time, number of database
operations, number of peer queries, number of peers used
and local mappings, density of result set, global query plan
(composed of local query plans).

2.2 PDMS instance generation
To perform meaningful experiments, it is important to cre-

ate different kinds of real-world Pdms instances and execute
queries on them. To simplify this step, System P includes
a Pdms generator. Based on a given reference schema this
generator creates a given number of peers, local sources, var-
ious heterogeneous schemas, mappings including comparison
predicates for the created peer graph (nodes = peers, edges
= set of peer mappings). As the relationships between the
reference schema and the derived schemas are known, the
generator can create appropriate mappings between the de-
rived schemas. Additionally, instances of local sources are
created, again using data given with the reference schema
or by generating new data values. All steps are highly pa-
rameterized to enable experiments on a large variety of sit-
uations. Finally, these peers are assigned to the differently
shaped Pdms graphs, such as simple chains, circles, trees,
and completely random graphs, and then distributed across
the network to the different peers.

In summary, System P is a fully functional, non-simulated
relational peer data management system with a test bed
environment to generate peers, distribute them, query them,
and collect query execution statistics.

3. PRUNING STRATEGIES
Typically, query plans in Pdms become surprisingly large

even for relatively small Pdms with tens of peers. For in-
stance, a PDMS of 31 peers each with mappings to a maxi-
mum of five other peers, the query plan for a single relation
query had a depth of 21 and submitted almost 70,000 sub-
queries along mappings between distributed peers. There-
fore, computing all certain answers in web-scale Pdms is not
feasible. To meet this scalability problem, we exploit the in-
fluence of mappings on the query results to decide which
mapping paths are not worth following. Our approach tries
to identify mapping paths that preserve potential complete-
ness of the intermediate query results “behind” these map-
pings.

We use the completeness information and its calculation
to prune away subplans that are not promising. In [11] we
presented several straightforward strategies, which simply
pruned mappings with an expected completeness below a
certain threshold. However, that approach did not guaran-
tee executions within a given resource constraint and in ex-
treme cases it may prune every result available in the Pdms.

In this approach, the benefit and cost of query answering
are solely dependent on the threshold for the completeness
measure of the peer mappings. As a result, pruning too less
mappings may lead to inacceptable response time.

P1 EDCBAR1
20%

EDCR3
40%

EDCBAR5 90%

P4 DCBAR4

10%

P6 EDCR6

CBAR2

P2

P5

R1(A,B,C,D,E) R5(A,B,C,D), B=‚US‘

R5(A,B,C,D,E)

R6(C,D,E)

R1(A,B,C,D,E)

R2(A,B,C), R3(C,D,E)

R4(A,B,C,D)

R2(A,B,C), R3(C,D,E), D>1
R6(C,D,E)

R3(C,D,E), D>10

100%60%90%

100%

40%

Figure 2: A small PDMS with mappings, source
coverages, and filter factors.

To overcome these restrictions, this paper shows how to
spend a given budget to maximize the benefit of query an-
swers while guaranteeing a limited amount of work.

To this end and in the spirit of the Mariposa system [12],
we propose a budget-driven approach, where peers are as-
signed a budget to use for query answering. Every peer is
free to decide about how to spend its budget and in which
way to refund unspent budget to other peers. Intuitively,
this exchange of budget is a means to establish a weak coor-
dination between peers. In this paper, we examine different
fully local strategies to spend and possibly refund budget.
The strategies differ in the way peers allot budget to their
outgoing mappings.

The main idea behind our budget spending strategies is
to distribute the budget to several mappings based on their
expected loss of information. Mappings are lossy if they
include projections and/or selections. The impact of these
selections and projections on the completeness of data re-
turned by the mappings is highlighted in the following ex-
ample and in Sec. 3.2.

3.1 Illustrative Example
To illustrate our approach, we introduce an example of

a simple Pdms with some schemas and mappings between
them, and guide the reader through the process of query
answering while considering completeness (Fig. 2).

Each inclusion mapping [6] is shown in the usual Datalog
notation. The mappings can be incomplete, for instance the
mapping P1 → P5 does not map attribute E. Also, mappings
may have predicates, whose effect as filter factors are ex-
pressed as percentages. For instance, the mapping P2 → P6

has a predicate (D > 10), which removes all but 60% of
the tuples. In reality of course such filter factors depend
upon the actual data sets passed through the mapping, as
discussed in Sec. 5.

We now regard query planning with a simple cost model
and our completeness model, discussed in detail in Sec. 3.2.
In our cost model, accessing a peer has a cost of 1. The
fixed budget assigned along with the initial query serves to
bound the resources spent for query planning and evalua-
tion. To ensure that we spend the budget wisely, i.e., that
we retrieve as many results as possible, we employ a simple
completeness model. It counts the number of retrieved at-
tribute values in relation to the overall number of attribute
values. Please note, that it is not necessary to know the
latter, because it only acts as a normalizing factor.

Assume that the entire Pdms holds data about 100 items
in the five attributes A, B, C, D, E. For instance, peer P5

stores 90 tuples, each with data across all five attributes.
Thus, P5 has a completeness of 90%. However, if this data
is passed through the mapping to P1, the number of tuples
is reduced to 36 (40% of 90 tuples) tuples and the number
of attributes is reduced to four. Thus, P5 has a complete-
ness of approx. 29% (144/500) from the perspective of P1.
This effect of decreased completeness is accumulated along
mapping paths.

Consider a query Q at Peer P1 asking for all objects of
relation R1. Let the budget of this query be 5, i.e., we can
access five peers to answer the query. The database at P1

can answer the query itself with a completeness of 20%. P1

has mappings to two other peers, P2 and P5, and it must
now decide, which paths to follow and how much budget to
allot to each path.

Using one of the strategies outlined later, P1 decides to
pass along the query only to P2. Since we assume full auton-
omy of peers, we employ a fully local optimization strategy;
if P1 had global knowledge about the benefit of other peers,
it might have chosen the path to P5, because it promises
more tuples, despite the selective filter on the mapping. Al-
beit, in a dynamic Pdms scenario with very many peers, one
cannot assume to have such knowledge.

The aggregated completeness is now incremented to in-
clude the data at P2: 20% + 40% − (20% · 40%) = 52%.
The subtraction accounts for duplicates among P1 and P2,
assuming for now independence of tuples stored in P1 and
P2 (Sec. 3.2). Next, P2 has a remaining budget of 3, decides
to spend it all for the path to P4, and forwards the query.
P4 increments completeness to 55.45%, accounting for the
fact that it supplies only four of the five attributes and only
10% of the tuples. Because there are no further mappings
to follow, P4 refunds the remaining budget of 2 to P2, which
in turn spends it on the originally ignored path to P6.

As P6 lacks a data source of its own, it cannot contribute
to the overall completeness and passes the query to P5.
Thus, the large data set of P5 is reached after all, however,
along a different path. This alternative path conserves more
data on the way back to P1. The final result after all peers
answer the query and send the results back along the path
of mappings has a completeness of 67.68%.

While this simple example is meant to convey the main
idea of the paper, real Pdms must deal with additional dif-
ficulties that we do not address in this paper but discuss as
future work in Sec. 5.

3.2 Completeness Model
Building upon previous work we model completeness in

two dimensions: coverage and density (see [11] and [9] for
more details). Briefly, coverage c(D) describes the propor-
tion of the size of a tuple set D to the number of all tuples
stored within a Pdms. The measure applies both to the data
set a peer actually stores and to a query result. For a query
result it is based on the overall number of tuples that fulfill
the query predicate, i.e., it is query-dependent.

Density on the other hand describes the number of at-
tribute values for each result tuple in relation to the at-
tributes of the query. Density, first suffers from null-values
in data sources. Secondly, attributes that are mentioned in
the query may not be available at certain data sources in the
Pdms. The user may be nevertheless interested in having
tuples in the query result despite their missing attributes.
Values of missing attributes are filled with null-values, thus
creating incomplete low-density tuples. Similar to coverage,
the density d(D) of a data set is also query-dependent.

Finally, overall completeness can be regarded as an aggre-
gated measure for the ratio of the amount of data in a certain
data set, e.g., the result set of a query, to the amount of data
in the whole Pdms. In [9] it is shown that the completeness
score of a data set D can be calculated as C(D) = c(D)·d(D)
and 0 ≤ C ≤ 1.

As described in Sec. 2, a peer creates a local query plan,
which is determined using all mappings usable for reformu-
lating the query at hand. We are interested in calculating
the influence of peers “behind” a certain mapping on the
completeness of this local query plan. To this end, we briefly
recall the main aspects of our completeness model [11, 9].
We assume that queries and mappings are select-project-join
(SPJ) queries. Additionally, query plans contain union-type
operators, which collect results returned by alternative map-
ping paths starting from a certain peer.

Applying a selection to a tuple set accessible through a
mapping reduces the set of tuples by a mapping selectivity
factor s. Assuming independency of the attributes occuring
in the selection predicates of the form x > c with a variable
x and a constant c, s can be calculated as the product of all
mapping selectivites s(x). We assume that these mapping
selectivities s(x) are known. It is subject to future research
to provide robust selectivity estimation techniques for our
context.

Assuming that null-values are distributed equally over all
tuples, density is not affected by a selection. For simplic-
ity we assume that a projection in a mapping leaves the
number of tuples unchanged but reduces the number of non-
null-attribute-values as shown in our example in Sec. 3.1.

To calculate completeness for the result of the join R1 �

R2 we assume independence of the representation of objects,
which means that there is no knowledge about extensional
overlap of R1 and R2. Then, we can draw formulas for the
expected coverage and density of R1 � R2 from [9]. The
issue of independence and of possibly known overlap and
join selectivities is addressed in [9]. The answer to a query
posed to a Pdms is usually made up of the union of many
contributions from alternative mapping paths. Since these
contributions may comprise different sets of attributes, we
employ the full outerjoin-merge operator � from [9] along
with formulas to calculate coverage and density of R1 � R2.

Using the above completeness model, we can calculate
the contribution of all peers “behind” a certain mapping

to a peer’s query result as follows. The coverage and den-
sity scores of the potential result returned by the mapping
are unknown at query planning time. However, it suffices
to assume them being 1 always, because we only need to
compare alternative mappings. The contribution of a cer-
tain mapping is determined by calculating the completeness
of the local query plan (1) with and (2) without considering
that mapping. Then the contribution of that mapping is the
difference in completeness between the results of (1) and (2).
Intuitively, this algorithm yields the impact of the informa-
tion loss of a mapping on the query result of the peer. Based
on this comparison, we now introduce several strategies to
distribute the peer’s budget to alternative mappings.

3.3 Budget Spending Strategies
Both of the following budget spending strategies allot the

same fraction of a peer’s budget to each subgoal of a conjunc-
tive query. They differ in how they distribute the budget of
a query subgoal to alternative mappings covering a certain
subgoal.
Strategy 1: Weighted. In this strategy, a peer con-
siders the weights of the potential completeness contribu-
tions of several outgoing mappings in a breadth-first man-
ner. The peer distributes the budget in inverse proportion
to the information loss of alternative mappings. This strat-
egy prefers to explore the neighborhood of a peer rather
than more remote peers and thus results in shorter map-
ping paths with less likely loss of information (and higher
semantic relevancy). As a further advantage, this approach
enables parallel usage of alternative mappings.

However, in cases where a peer faces to a high fraction of
mappings with information loss, it is forced to spend bud-
get on poor mappings. Thus, this approach should be used
in conjunction with a threshold-based pruning strategy [11].
Additionally, it has to be considered that mappings resulting
in local-as-view style reformulations [6] cover several rela-
tions at a certain peer. Tuples retrieved over such mappings
promise to contribute more completeness to the overall re-
sult than mappings that substitute only a single relation in
a global-as-view fashion.
Strategy 2: Greedy. To maximally exploit mappings
which are supposed to return the maximal amount of data,
this strategy assigns the entire budget of a query subgoal to
the mapping with the lowest potential loss of information.
In effect, this leads to a greedy, depth-first traversal of the
search space along mapping paths preserving comparably
much information.

This strategy promises to return the most amount of data
for very small budgets compared to the size of the search
space. A disadvantage of this approach is that the Pdms
might not be explored equally, because the different recur-
sive reformulation paths operate independently at different
peers. However, this does not concern the equal assignment
of budget to the subgoals of a query mentioned above. Ob-
serve that the amount of data a certain mapping will return
on one hand depends on the selection predicates in the query.
Second, it can vary with the size of the budget it is assigned
for further exploration of the search space. It is subject to
further research to investigate and consider the latter issue.

Clearly, the effectiveness of these two strategies strongly
depends on the ratio between the amount of budget avail-
able at all and the size of the search space. Additionally, the
rank of a Pdms (the average number of peer mappings of a

peer) is an important factor. The more interconnected the
peers, the more likely it is that there are alternative mapping
paths, which in turn may reach peers that otherwise would
not have been found. Most notably, the fraction and distri-
bution of loss of information in the peer mappings strongly
influences the effectiveness of our strategies. The more in-
formation loss is encountered, the better the strategies work.
On the other hand, if there would be no information loss,
the Weighted strategy would behave equally as the expan-
sion of all mappings. We provide first experiments on both
strategies in Sec. 4, but first turn to two variations.

3.4 Budget Refunding
Variation 1: Altruistic Greedy and Altruistic
Weighted. Both the Greedy and the Weighted strategies
are performed strictly locally at the peers. However, under
limited resources it may be better to allow some coopera-
tion between peers to intelligently spend a limited budget:
In this altruistic variation a peer can refund budget back to
where it came from if it has no more (promising) mappings
to follow. Peers getting back budget either can spend it to
mappings they have ignored initially, as it was shown in our
example in Sec. 3.1, or can in turn refund the budget if they
already have used each of a set of alternative mappings. In
effect, budget may be refunded back over several peers.

The altruistic variation can be combined with both strate-
gies. It works well for the Greedy strategy, because along a
path back to the peer the query originates from there usu-
ally are many mappings not expanded yet. So they might
use the refunded budget. In contrast, using the strategy
Weighted almost leads to expanded query subgoals along a
path to the origin of a query.

The only opportunities to use refunded budget in this case
are mappings pruned earlier. This means that refunded bud-
get is either used for mappings with information loss or is
not used at all, i.e., due to recursive refunding the budget
may return to the peer to which the inital query was posed
to. In the latter case, it may be reasonable to allot unused
budget a second time to mappings which have contradicted
their completeness assumption by returning more data than
expected. We leave this aspect to further research.
Variation 2: Deferred Weighted. This strategy pro-
vides a way to decide about allotting budget based on
(slightly) more global knowledge. This can be accomplished
by defering the decision about spending budget to the next
mapping until it is known how much budget the current
mapping will refund. On the one hand, this would take
more time, because answering of a single query can not run
in parallel. However, this strategy guarantees that the en-
tire budget is used up even for the strategy Weighted. In
this paper, we do not examine this variation experimentally.
Please note that the Greedy strategy is inherently a defer-
ring strategy.

4. EXPERIMENTS
In this section we present only initial experiments with

System P. In particular we present results regarding the
completeness of query results under our budget approaches;
experiments on differently parameterized Pdms instances
are yet underway.

4.1 Experimental Setup
Neither the number of peers, nor the rank as the average

number of mappings per peer are sufficient to characterize
the complexity of query answering in Pdms, because queries
may not use all peers and mappings. Therefore, in this paper
we use the number of query reformulation steps as a cost
measure. The benefit is given by the expected completeness
of the resulting query plans determined using the formulas
from [9].

We refer to real-world schema BioSQL1 from the life sci-
ences domain. It was varied by normalization and denor-
malization and the resulting schemas were assigned to peers
of random graphs. We assume a scenario, where different re-
search groups provide peers with protein information along
with mutation experiments. Different sets of species covered
by the peers and varying publication dates of the informa-
tion result in selection predicates in the peer mappings. As
some peers do not publish certain attributes of their exper-
iments, the peer mappings may contain projections as well.

We experimented with Pdms configurations consisting of
up to four different subsets of the BioSQL schema. The less
data is distributed in the Pdms, the higher the effort is to
find all certain answers. For this reason, in our experiments
every peer covers only 5% of the size of the world. The
datasets used are listed in Tab. 1.

#Peers rank Mappings with loss
P1 21 1.8 35%
P2 50 1.3 20%

Table 1: Datasets and their main characteristics.

4.2 Measurements
The effects of the strategies Greedy and Weighted are

shown in Fig. 3. There, they are compared to the full expan-
sion (“without pruning”) using all possible peer mappings.
Note that the overall cost of the full expansion in the Pdms
P2 in Fig. 3 is at about 5500. I.e., a completeness of 1 is
achieved at a point well beyond the scale of the image.

As can be seen, our strategies achieve similar results
as the full expansion while guaranteeing that the cost are
within a given budget. Moreover, we observed that for rea-
sonable sizes of the initial budget compared in relation to
the search space, Greedy and Weighted retrieve nearly the
same amount of data as the full expansion, independently
of the budget: At less than 10% of the cost of full expan-
sion, Greedy already yields nearly 100% completeness and
Weighted reaches about 85%. Observe that for the Weighted
strategy a considerable part (40%) of the budget is not used.
This is due to the problems with budget refunding in this
strategy discussed in Sec. 3.4.

To compare the different approaches we determine the ra-
tio completeness/cost as an efficiency measure. In the Pdms
configurations above, our budget-driven strategies increase
efficiency from several factors up to more than an order of
magnitude compared to the computation of all certain an-
swers without pruning (see Fig. 4).

In summary, our experiments clearly show the feasibility
of our strategies for query planning under a limited budget.
Especially for large Pdms they achieve nearly the same com-
pleteness as computing all certain answers but with drasti-
cally reduced cost.

1obda.open-bio.org

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700

C
om

pl
et

en
es

s

Cost (#mappings used)

without pruning
Greedy (500 budget)

Weighted (500 budget)

Figure 3: Results of PDMS P2 using the strategies
Greedy and Weighted. Note that the efficiency of
the expansion without pruning refers to an unlim-
ited budget.

0

2

4

6

8

10

12

N
o

rm
a
li

z
e
d

 E
ff

ic
ie

n
c
y

no pruning

Weighted

Greedy

P1 P2

Figure 4: Normalized efficiency (ratio completeness
to cost at a budget of 100 and 500 respectively).

5. CONCLUSIONS
Peer data management systems offer a decentralized and

dynamic infrastructure to share heterogeneous data between
autonomous peers. To scale Pdms to a large number of peers
it is crucial to bound the cost of query answering while still
providing enough benefit for the user.

We introduced our full-fledged Pdms System P, which im-
plements a novel, fully decentral approach to maximize com-
pleteness of query answers under a cost limit. The main con-
tribution were two strategies for spending a limited budget
along with variations concerning budget refunding. Our ex-
periments showed that these strategies yield satisfying com-
pleteness even with quite small budgets. In summary, our
budget-driven query reformulation approach increases effi-
ciency by up to an order of magnitude.

In future work we aim to gather and maintain statistics
about the completeness “behind” peer mappings and apply
them to estimate query-dependent selectivity. Second, we
plan a more detailed cost model to improve the results of
our strategies by considering benefit-to-cost ratios. Finally,
completeness is only one of many possible information qual-

ity dimensions in the context of Pdms—others promise to
be useful as well.
Acknowledgments. We thank S. Trissl and U. Leser for
their support with the life science data. This research was
supported in part by the German Research Society (DFG
grant no. NA 432).

6. REFERENCES
[1] Karl Aberer, Philippe Cudré-Mauroux, and Manfred

Hauswirth. The Chatty Web: Emergent semantics
through gossiping. In Proc. of the Int. World Wide
Web Conf. (WWW), 2003.

[2] P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset,
and L. Simon. Distributed reasoning in a peer-to-peer
setting: Application to the semantic web. Journal of
Artificial Intelligence Research, 25:269–314, 2006.

[3] D. Calvanese, G. De Giacomo, M. Lenzerini, and
R. Rosati. Logical foundations of peer-to-peer data
integration. In Proc. of the Symposium on Principles
of Database Systems (PODS), 2004.

[4] E. Franconi, G. M. Kuper, A. Lopatenko, and
I. Zaihrayeu. Queries and updates in the codb peer to
peer database system. In Proc. of the Int. Conf. on
Very Large Databases (VLDB), 2004.

[5] Alon Y. Halevy, Zachary Ives, Peter Mork, and Igor
Tatarinov. Piazza: Data management infrastructure
for semantic web applications. In Proc. of the Int.
World Wide Web Conf. (WWW), 2003.

[6] Alon Y. Halevy, Zachary Ives, Dan Suciu, and Igor
Tatarinov. Schema mediation in peer data
management systems. In Proc. of the Int. Conf. on
Data Engineering (ICDE), 2003.

[7] Ralf Heese, Sven Herschel, Felix Naumann, and Armin
Roth. Self-extending peer data management. In Proc.
of the Conf. Datenbanksysteme in Business,
Technologie und Web (BTW), Karlsruhe, Germany,
2005.

[8] Alexander Löser, Wolfgang Nejdl, Martin Wolpers,
and Wolf Siberski. Information integration in
schema-based peer-to-peer networks. In Proc. of the
Conf. on Advanced Information Systems Engineering
(CAiSE), 2003.

[9] Felix Naumann, Johann-Christoph Freytag, and Ulf
Leser. Completeness of integrated information sources.
Information Systems, 29(7):583–615, 2004.

[10] P. Rodŕıguez-Gianolli, M. Garzetti, L. Jiang,
A. Kementsietsidis, I. Kiringa, M. Masud, R. J. Miller,
and J. Mylopoulos. Data sharing in the hyperion peer
database system. In Proc. of the Int. Conf. on Very
Large Databases (VLDB), 2005. Demonstration.

[11] Armin Roth and Felix Naumann. Benefit and cost of
query answering in PDMS. In Proc. of the Int.
Workshop on Databases, Information Systems and
Peer-to-Peer Computing (DBISP2P), 2005.

[12] M. Stonebraker, P. M. Aoki, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: A
wide-area distributed database system. In VLDB
Journal, volume 5, pages 48–63, 1996.

[13] Igor Tatarinov and Alon Y. Halevy. Efficient query
reformulation in peer data management systems. In
Proc. of the ACM Int. Conf. on Management of Data
(SIGMOD), 2004.

